Climate Variability, Hydrology, and Flooding

Remote Sensing Observations for Flood Modeling

Objective

Learn to access NASA remote sensing and modeling data for input to hydrology/flood models

Outline

- Review of Hydrological Parameters Relevant to Flood Modeling
- Weather Data for Hydrology Modeling
- Terrain Data for Hydrology Modeling

Review of Hydrological Parameters Relevant to Flood Modeling

NASA Satellites and Atmosphere-land Models Provide Data for Inputs to Hydrology Models

□ Rainfall
TRMM

□ Weather Data: Temperature, Winds, Humidity
MERRA

□ Soil Moisture
GLDAS/TMI/SMAP

□ Terrain
Shuttle Radar Topography Mission

□ Land Cover
Terra/Aqua MODIS

NASA Satellites and Atmosphere-land Models Provide Data for Inputs to Hydrology Models

This Session will focus on MERRA and SRTM Data and Access

Weather Data for Hydrology Modeling

Modern Era Retrospective-analysis for Research and Applications (MERRA)

http://gmao.gsfc.nasa.gov/merra

What is Reanalysis?

- A technique to produce multiple climate variables with a value added merger of many types of observations with the latest Earth systems models
- Past observations of basic meteorological data such as temperature, wind speed, and pressure are analyzed and interpolated onto model grids
- 3-D forecasting model is initialized and constrained with the observations. The model simulations provide many climate variables which are not observed, for example moisture flux
- The model simulations also provide more frequent (hourly, 6hourly) outputs than observations

MERRA Blends the vast quantities of observational data with output data of the Goddard Earth Observing System (GEOS) model [1979-present]

As the observing system improves, modeling uncertainties decrease

Current satellite coverage assimilated in MERRA

Observations Used in MERRA Reanalysis

MERRA focuses on historical analyses on a broad range of weather and climate time scales (hours to years) and places the NASA satellite observations in a climate context

Technologies change; Instrument life cycle

From: Michael Bosilovich, NASA-GSFC-GMAO

MERRA Weather Data for Hydrology Modeling

Parameters (Latitude-Iongitude-Height/Pressure Levels)*

Temperature

East-West and North-South Wind Components

Specific Humidity and Relative Humidity

Spatial Resolution: 1.25°x1.25° and 42 vertical levels

Spatial Coverage: Global

Temporal Resolution: Hourly, Monthly

Temporal Coverage: 1979-Present

MERRA Data Access

Data can be downloaded from http://mirador.gsfc.nasa.gov by a keyword search. Also, can search by time and location/region

Terrain Data for Hydrology Modeling

From Shuttle Radar Topography Mission (SRTM)

Acknowledgement: Cynthia Schmidt (NASA-ARSET), Lindsey Harriman (USGS), Kelly Lemig (USGS)

Sources of NASA Terrain Data

Radar: Shuttle Radar Topography Mission (SRTM)

Radiometer: Terra Advanced Spaceborne Thermal Emission

and Reflection

Radiometer (ASTER)

Useful for Mapping

Hazardous terrain

Calculating

Slope and aspect

Catchment area

Forest canopy height

Modeling

Runoff

Stream networks

Landslides

Shuttle Radar Topography Mission (SRTM) Version 3.0 (SRTM Plus)

https://lpdaac.usgs.gov/products/measures_products_table

What is SRTM?

http://www2.jpl.nasa.gov/srtm/

- NASA mission completed in February 2000
- Consisted of 176 orbits around Earth in 11 days
- Acquired Digital Elevation Model (DEM) of all land between 60°N and 56°S latitude, about 80% of Earth's total land mass

NASA SRTM Version 3.0 (SRTM Plus)

Radar signals being transmitted and recieved in the SRTM mission (image not to scale).

http://srtm.usgs.gov/data/interferometry.php

NASA SRTM v3 Characteristics

Tile size	1º by 1º	Nama
Pixel size	1 arc second (~30 meters) or 3 arc seconds (~90 meters)	New version released in 2014 has high resolution
Geographic coordinates	Geographic latitude and longitude	
Output format	DEMS: .HGT, 16-bit signed integer, in units of vertical meters Number: .NUM	
Geoid reference	WGS84/EGM96	
Special DN values	N/A - No voids in v3	
Coverage	60°N to 56°S latitude U.S. and Territories Africa	

NASA SRTM v3 Products

Short Name	Collection	MEaSUREs Data Product	Spatial Resolution
SRTMGL1	SRTM	SRTM Global 1 arc second	1 arc-second
SRTMGL1N	SRTM	SRTM Global 1 arc second number	1 arc-second
SRTMGL3	SRTM	SRTM Global 3 arc second	3 arc-second
SRTMGL30	SRTM	SRTM Global 30 arc second	30 arc-second
SRTMGL3N	SRTM	SRTM Global 3 arc second number	3 arc-second
SRTMGL3S	SRTM	SRTM Global 3 arc second sub-sampled	3 arc-second
SRTMSWBD	SRTM	SRTM Water Body Data Shapefiles & Raster Files	1 arc-second
SRTMUS1	SRTM	SRTM US 1 arc second	1 arc-second
SRTMUS1N	SRTM	SRTM US 1 arc second number	1 arc-second

Sampling Methods: Global 3 arc second data

SRTM Data Use Case

Affected
Local
Government
Areas
10
12
12
13
13
22

Onwuteaka, J., 2014, GIS Modeling of Flooding Exposure in Nigerian Coastal Areas from Sea Level Rise, Journal of Environment and Earth Science v 4, no. 12, p. 81-94.

How to Access NASA SRTM v3

Reverb:

http://reverb.echo.nasa.gov/reverb

GDEx:

http://gdex.cr.usgs.gov/gdex/

 Data Pool and DAAC2Disk: https://lpdaac.usgs.gov/data-access/data-pool

More information: SRTM v3 User Guide
 https://lpdaac.usgs.gov/sites/default/files/public/measures/docs/
 NASA SRTM V3.pdf

Global Data Explorer (GDEX)

http://gdex.cr.usgs.gov/gdex/

- Funded through NASA ROSES 2005 ACCESS Program
- A collaboration between the LP DAAC and George Mason University's Center for Spatial Information Science and Systems
- A seamless data viewer providing access to multiple sources of digital elevation data sets
- Users can subset and download data by area of interest in multiple formats and projections

GDEx

GDEx Features and Functions

- NASA ECHO/Reverb user account required to download data
- Product documentation and User Guide
- Square or polygonal area of interest
- Pre-defined areas of interest (state, county)
- Advanced, on-the-fly processing
 - Mosaic tiles coverage clipped to area of interest
 - Reformat to GeoTIFF, ArcASCII, or JPEG
 - universal transverse Mercator (UTM) or LAT/LON projection
- Preview data before download

GDEx Tile Limits

Summary

Data for Hydrology Model Inputs

Quantity	Source	Access
Rainfall	TRMM TMPA GPM IMERG (In 2016)	Giovanni (Also TMPA Near-real- Time data from IRI Climate Data Library)
Weather Parameters (Temperature, Humidity, Winds)	MERRA	Mirador
Soil Moisture	GLDAS SMAP (In 2016)	Mirador, Giovanni NSIDC
Land Cover	Terra and Aqua/MODIS	Reverb
Terrain	SRTM	Reverb, GDEx

Next:

Overview of

TRMM-based Flood Monitoring Tools